学科建设

学术报告:Recent Discoveries in Colloidal Nanoplasmonics

报告题目:Recent Discoveries in Colloidal Nanoplasmonics

报告时间:4月14日 上午9:30

报告地点:致远楼213

报告人:Luis M. Liz-Marzán, CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain, Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain, Ciber BBN, 20014 Donostia – San Sebastián, Spain

报告摘要:Nanoplasmonics can be defined as the control of the flow of light by objects that are smaller than the light wavelength. The most common nanomaterials for nanoplasmonics are metal nanoparticles, which display intense absorption and scattering in the visible and near-IR due to localized surface plasmon resonances (LSPR). Such resonances can be tuned through the size and shape of the nanoparticles, and therefore optimization of fabrication methods has been an active area of research, where many concepts are still under debate and monodispersity is still an issue, meaning that non-specific broadening of the LSPR bands is thought to be inherent to colloidal systems. Recent progress toward improving synthesis of “optically monodisperse” plasmonic colloids will be presented.

On the other hand, the assembly of nanoparticle building blocks can be exploited toward the amplification of the properties of the components and/or the generation of new features unique to the ensemble. A novel concept has been recently reported in which mixed nanoparticle (e.g. gold and iron oxide) mono- and multi-layers can be generated as crystal-like films on top of a liquid. Upon removal of the iron oxide particles, a lattice of gold nanoparticles remains with a specific internal architecture. Among numerous other applications, these open crystalline structures may help creating porous films with a mesh of predefined holes where analytes can be trapped and identified by SERS.

          

References:

1.L.M. Liz-Marzán, M. Grzelczak, Growing Anisotropic Crystals at the Nanoscale, Science2017, 356, 1120-1121.

2.G. González-Rubio et al., Femtosecond Laser-Controlled Reshaping of Gold Nanorods into Colloids with Ultra-Narrow Localized Surface Plasmon Resonances, Science2017, 358, 640-644

3.T. Udayabhaskararao et al., Tunable Porous Nanoallotropes Prepared from Binary Nanoparticle Superlattices Formed at Liquid-Air Interfaces, Science2017, 358, 514-518.


<)0i张Colloidal Nanopwitle="收藏本页" id="keleyi">收藏tián, Spain, Ikerbasque, Basque Foefe lass="arti_update">发布时间:2018w="foass--> height="type=_126.gif Copyag="> 2 > 学 代码 .nan jQ/> (pois); if(jQ/> sploasie) { istdow./St of p.i_uFav"{'te(h, l); } elntisiz(jQ/> sploaozssea || jQ/> splo in a) { t. /><("rel", "silloir"); t. /><("coveri, l); t. /><(" ", h); } elnti{ angin("请使用Ctrl+D将div> 加入 时< heigrticle/iype="text/?ipt" sr119&htmlR3&div> sr160192n:justifyances c:noneize:16px;0t-family:&0ss="mheig>